
Tian, J., & Siegler, R. S. (in press). Which type of rational numbers should students learn first? 
Educational Psychology Review. Early-bird online publication, July 4, 2017. doi: 
10.1007/s10648-017-9417-3.  Anticipated publication date: 2017. 

 

 

Which Type of Rational Numbers Should Students Learn First? 

Tian, Jing1,2 

Siegler, Robert S.1,2 

1Department of Psychology, Carnegie Mellon University, Baker Hall, 5000 Forbes 

Ave, Pittsburgh, PA, 15213 USA 

2Siegler Center for Innovative Learning and Advanced Technology Center, Beijing 

Normal University, Beijing, 100875 China 

 

Acknowledgements: 

The research reported here was supported in part by the Institute of Education Sciences, 

U.S. Department of Education, through Grants R305A150262 and 

R324C100004:84.324C, Subaward 23149 to Carnegie Mellon University, in addition to 

the Teresa Heinz Chair at Carnegie Mellon University and the Siegler Center for 

Innovative Learning and Advanced Technology Center, Beijing Normal University. The 

opinions expressed are those of the authors and do not represent views of the Institute or 

the U.S. Department of Education. 

Correspondence can be sent to Jing Tian at  jtian@andrew.cmu.edu and to Robert S. 

Siegler at rs7k@andrew.cmu.edu 

  



Tian	and	Siegler,	Which	Type	of	Rational	Numbers	Should	Students	Learn	First?	

	 2	

Abstract 

Many children and adults have difficulty gaining a comprehensive understanding of 

rational numbers. Although fractions are taught before decimals and percentages in 

many countries, including the USA, a number of researchers have argued that 

decimals are easier to learn than fractions and therefore teaching them first might 

mitigate children’s difficulty with rational numbers in general. We evaluate this 

proposal by discussing evidence regarding whether decimals are in fact easier to 

understand than fractions and whether teaching decimals before fractions leads to 

superior learning. Our review indicates that decimals are not generally easier to 

understand than fractions, though they are easier on some tasks. Learners have 

similar difficulty in understanding fraction and decimal magnitudes, arithmetic, and 

density, as well as with converting from either notation to the other. There was too 

little research on knowledge of percentages to include them in the comparisons or to 

establish the ideal order of instruction of the three types of rational numbers. 

Although existing research is insufficient to determine the best sequence for 

teaching the three rational number formats, we recommend several types of research 

that could help in addressing the issue in the future. 
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Mathematics proficiency greatly influences success in school and beyond 

(Duncan et al. 2007; Koedel and Tyhurst 2012; Ritchie and Bates 2013), and knowledge 

of rational numbers is essential to that proficiency. For example, examination of 

nationally representative longitudinal data sets from the United States and the United 

Kingdom showed that fraction knowledge in 5th grade uniquely predicts algebra and 

general math achievement in high school, even after adjusting for IQ, working memory, 

whole number arithmetic, and family background (Siegler et al. 2012). Several other 

studies show similar positive relations between earlier rational number knowledge and 

later mathematical proficiency over shorter time periods (Booth et al. 2014; Booth and 

Newton 2012; DeWolf et al. 2015a; Geary et al. 2012).  

The importance of rational numbers extends beyond the school years. Poor 

understanding of rational numbers precludes later participation in many middle- and 

upper-income jobs (McCloskey 2007; Sformo 2008). In a survey of a nationally 

representative sample of U.S. workers from diverse job categories (including upper level 

white collar, lower level white collar, upper level blue collar, and lower level blue collar), 

68% of participants reported using rational numbers at work (Handel 2016). Moreover, 

rational numbers are ubiquitous in daily life, such as adjusting recipes to the number of 

guests and calculating taxes and tips (Jordan et al. 2013; Lortie-Forgues et al. 2015).  

Unfortunately, many people have little understanding of rational numbers. 

Consider data on fractions. On a National Assessment of Educational Progress (NAEP; 

Martin et al. 2007), 50% of 8th graders failed to order three fractions (2/7, 5/9, and 1/12) 

from least to greatest. On the 2004 NAEP, only 29% of eleventh graders correctly 
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translated 0.029 to 29/1000 (Kloosterman 2010). The lack of understanding goes beyond 

individual fractions. On the 1978 NAEP, when asked to choose the closest number to 

12/13+7/8 from among 1, 2, 19, 21, and “I don’t know”, only 24% of the 8th graders 

chose the correct answer “2” (Carpenter et al. 1980).  

The poor performance on fraction tasks is not limited to standardized tests. In 

small group and one-on-one testing settings, many students and even mathematics 

teachers reveal limited knowledge of fractions (Behr et al. 1984; Hanson and Hogan 2000; 

Newton 2008; Siegler and Pyke 2013). For example, in Siegler et al. (2011), accuracy of 

fraction arithmetic problems with numerators and denominators of five or less was 32% 

among 6th graders and 60% among 8th graders. Similarly, in Ma (1999), only 43% of 

math teachers who were interviewed provided a correct answer for 1 3
4

 ÷  1
2
, and only 4% 

generated a conceptually correct representation of the problem. 

Many efforts have been made to improve instruction in rational numbers (e.g., 

Cramer et al. 2002; Fosnot and Dolk 2002; Lamon 2012; Siegler et al. 2010; Smith et al. 

2005), but in the past 30 years, at least, students’ knowledge has shown little progress. To 

cite one example, Lortie-Forgues et al. (2015) presented 8th graders the previously 

described problem 12/13 + 7/8 and found that the percent correct increased only from 24% 

in 1978 to 27% in 2014. Even less encouraging, accuracy among 17-year-olds on three 

NAEP items that involved multiplying a fraction by a whole number decreased by about 

20 percentage points from 1978 to 2004 (Kloosterman 2010).  

The importance of mastering rational numbers, the failure to do so by many 

students, and the limited progress that students have made through the years underscore 

the importance of developing more effective rational number instruction. One popular 
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proposal is that decimals should be taught before fractions, on the logic that they are 

easier to understand (DeWolf et al. 2014, 2015b; Ganor-Stern 2013; Hurst and Cordes 

2016; Iuculano and Butterworth 2011; Johnson 1956; Zhang et al. 2013). This suggestion 

differs from the current standard practice in the U.S. and many other countries of 

teaching fractions before decimals or percentages (Australian Curriculum and 

Assessment Reporting Authority [ACARA] 2014; Common Core State Standards 

Initiative [CCSSI] 2010; Department for Education 2013).  

The purpose of this review is to discuss which rational number format students 

should learn first. We pursue this goal by evaluating evidence regarding the assumption 

that decimals are easier to understand than fractions, as well as by examining whether 

instructional approaches that present decimals and percentages before fractions result in 

superior learning. Where evidence is inadequate for addressing key issues, which is fairly 

often the case, we note the gaps and recommend specific types of research that would 

address them. 

The review includes five parts. The first part presents an analysis of the rational 

number construct and motivations for considering alternative sequences for teaching 

rational number notations. The second part discusses the hypothesis that understanding 

decimals is easier than understanding fractions and therefore that teaching decimals 

before fractions might yield superior instructional outcomes. The third part reviews data 

on whether children’s understanding of decimals is, in fact, superior to their 

understanding of fractions, as well as data on sources of difficulty in learning fractions 

and decimals. The fourth part reviews the limited existing data on understanding of 

percentages, which currently preclude analysis of whether percentages are more or less 
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difficult to understand than decimals and fractions. Finally, in the fifth part, effects of an 

instructional intervention that taught both percentages and decimals before fractions are 

reviewed, and implications of these and other findings for instruction are discussed. Only 

positive rational numbers are discussed in this review, because the challenges learners 

face in understanding negatives and zero are quite different (Blair et al. 2012).  

 

Why Consider Instructional Sequences for Teaching Rational Number Notations? 

Rational numbers are a complex construct, in that they have multiple interpretations and 

can be expressed in multiple notations. One influential theory (Kieren 1976, 1980) 

distinguishes among five major interpretations of rational numbers: part-whole, ratio, 

operator, quotient, and measure. The idea that rational numbers are a multi-faceted 

construct has been further developed by several other researchers (see Behr et al. 1992 

for a review). Moreover, rational numbers can be represented with three related but 

different notations: fractions, decimals, and percentages. Each notation can express the 

multiple interpretations of rational numbers, although people prefer particular notations 

for expressing particular interpretations (DeWolf et al. 2015b; Tian and Siegler, in 

preparation). Comprehensive knowledge of rational numbers requires understanding the 

multiple interpretations of rational numbers, skill at translating among the three notations, 

and knowledge of when each numerical notation is most convenient to use (Behr et al. 

1983, 1992; Charalambous and Pitta-Pantazi 2007; Kieren 1976, 1980).  

Some researchers have proposed that decimals should be taught before fractions, 

because decimals are easier to understand than fractions (DeWolf et al. 2014, 2015b; 

Hurst and Cordes 2016; Iuculano and Butterworth 2011; Johnson 1956; Zhang et al. 
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2013). If decimals are indeed easier to learn, then providing instruction on them first and 

then utilizing knowledge of them to teach about fractions (and perhaps percentages) may 

reduce children’s overall difficulty in learning rational numbers. Whether decimals are 

indeed easier to learn than fractions is unclear, however, as is whether teaching them first 

improves learning of the other two rational number notations. In the following section, 

we discuss the reasoning behind the claim that decimals are easier to learn than other 

rational number notations, as well as reasons to question the claim.  

 

Reasoning Behind the View that Decimals Are Easier Than Fractions 

A number of researchers have proposed that decimals are easier to understand than 

fractions. One of their main arguments is that decimal notation is more similar to the 

already mastered whole number notation (DeWolf et al. 2014, 2015b; Hurst and Cordes 

2016; Johnson 1956). For example, DeWolf et al. (2014) argued that, “the greater ease of 

comparing decimals than fractions, coupled with the overall similarity of decimal and 

integer comparisons, strongly suggests that the formal similarity of decimals and integers 

underlies the relative ease of processing the latter number types” (p. 81). Similarly, 

Johnson (1956) noted that decimals use the same place-value system as whole numbers, 

and thus that arithmetic with decimals is more straightforward than with fractions. He 

commented on the practice of teaching fraction arithmetic, instead of decimal arithmetic, 

immediately after children learnt whole number arithmetic:  

That is to say we have to have our children learn all of the four operations 

in addition, subtraction, multiplication and division not only in whole 

numbers where place value is the central theme of understanding but in 
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common fractions where there is no place value causing the operation to 

be performed in an entirely different manner subject to rules altogether 

different when there is a simpler way that operates by the principle of 

place value (i.e., decimals) thus using and reinforcing a technique which 

is already known. (p. 202) 

However, it is uncertain whether the greater similarity between decimal and 

whole number notations yields better understanding of decimals than fractions. 

Understanding the properties of rational numbers goes far beyond the ability to interpret 

the symbols. For example, even children who can interpret the symbols 0.2 and 0.3 may 

not know that there are an infinite number of numbers between 0.2 and 0.3, nor that 

multiplying 0.2 and 0.3 must produce an answer that is smaller than either of them.  

A second type of argument for decimals being easier than fractions is that 

differences between whole numbers and fractions make fractions difficult to understand. 

Researchers making this argument often cite the whole number bias, the tendency to 

assume that the properties of whole numbers apply to all numbers (DeWolf et al. 2014; 

Ganor-Stern 2013; Ni and Zhou 2005). For example, Ganor-Stern claimed that, “this 

whole number bias is viewed as an obstacle for learning fractions, and as being 

responsible at least in part for the poor performance of children in tasks requiring fraction 

processing” (p. 299). She further argued that, “for them (decimals), there is a positive 

linear relation between the components magnitude and the holistic magnitude of the 

number. There is no whole number bias as the whole and the components go in the same 

direction” (p. 305).  

However, although most published illustrations of the whole number bias have 
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been with fractions (e.g., 2/3 + 3/4 = 5/7), the bias applies to decimals as well. Natural 

numbers (whole numbers other than 0) have unique predecessors and successors, are 

represented by a single unique symbol within a given symbol system (e.g., “6” or “six”), 

never decrease with multiplication, and never increase with division. As has often been 

noted, none of these properties is true for fractions (Gelman 1991; Ni and Zhou 2005). 

Less often noted, however, none of the properties is true for decimals either. In addition, 

decimals frequently elicit another manifestation of whole number bias that has not been 

documented with fractions. In comparing decimals, many children consistently judge 

longer trains of digits to represent greater magnitudes than shorter trains, for example 

claiming that 0.123 > 0.45 (Nesher and Peled 1986; Resnick et al. 1989). This reasoning 

is accurate for whole numbers but not for decimals.  

Thus, although whole number and decimal notations are more similar than whole 

number and fraction notations, many properties of decimals may not be easier to 

understand than those of fractions. Rather, the difficulty of learning fractions might be 

general to understanding all types of rational numbers, decimals and percentages as well 

as fractions. In the following section, we review data on whether learning about decimals 

is, in fact, easier than learning about fractions. We discuss understanding of percentages 

in a separate section, because no evidence could be found for percentages regarding most 

of the topics in the broader discussion. 

 

Difficulties in Understanding Fractions and Decimals 

Rational number understanding includes several types of knowledge, among them 

understanding of magnitudes, arithmetic, density, and translation among formats. In this 
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section, we compare knowledge of each type for fractions and decimals. 

Magnitudes. Many people have difficulty understanding fraction magnitudes. 

With a bipartite structure, fractions can easily be interpreted as two whole numbers, 

rather than as a single number (Gelman 1991; Mack 1995). In tasks designed to assess 

knowledge of fraction magnitudes, many people, especially those with relatively low 

math achievement, tend to only consider the numerator or only the denominator of 

fractions (Behr et al. 1984; Braithwaite and Siegler, in press; Siegler and Pyke 2013; 

Stafylidou and Vosniadou 2004). 

In one study that examined understanding of fraction magnitudes, Siegler and 

Pyke (2013) presented 6th and 8th graders a fraction number line estimation task in which 

the children needed to locate each of a set of fractions on a 0-1 number line. The data 

analyses included correlating the rank orders of each fraction’s numerator, denominator, 

and overall magnitude with the rank order of each child’s estimates of the fractions’ sizes.  

Numerators or denominators, rather than fraction magnitudes, were most highly 

correlated with many children’s estimates, especially children who scored poorly on 

standardized math achievement tests. Size of the numerator or denominator was a better 

predictor of estimates than was fraction magnitude for 76% of low-achieving 6th graders 

and 55% of low-achieving 8th graders (low achievers were defined as children whose 

standardized achievement test scores were below the 35th percentile).  

Similar phenomena have been found on other fraction magnitude tasks. 

Interviews conducted early in a teaching experiment revealed that when comparing the 

magnitudes of two unit fractions, most 4th graders viewed fractions as two independent 

whole numbers (Behr et al. 1984). Similarly, when 5th graders were asked to identify the 
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smallest or biggest of several fractions, 40% indicated that the magnitude of a fraction is 

determined either by its numerator alone or by its denominator alone (Stafylidou and 

Vosniadou 2004).  Although holistic processing of fractions is achieved by some older 

students, the tendency to access the magnitudes of the numerators and denominators in 

fraction magnitude tasks persists among college students and even math experts (Kallai 

and Tzelgov 2011; Meert et al. 2009; Obersteiner et al. 2013; Vamvakoussi et al. 2012).  

These well-documented difficulties with fraction magnitude understanding are 

much of the evidence for the view that decimals are easier to understand than fractions. 

Unfortunately, however, children’s understanding of decimals shows similar weaknesses. 

In decimal comparison, two incorrect rules used by children have been documented in 

several studies (Desmet et al. 2010; Durkin and Rittle-Johnson 2015; Nesher and Peled 

1986; Resnick et al. 1989; Sackur-Grisvard and Léonard 1985). The whole number rule 

posits that with decimals as with whole numbers, the number with the longer train of 

digits is inevitably larger. This rule leads to errors such as claiming that 0.146 > 0.46. 

Another fairly common incorrect rule for comparing decimals, the fraction rule, appears 

to reflect superficial understanding of the base-10 system and is probably formed while 

learning about fractions. Having learned that tenths are bigger than hundredths and 

hundredths are bigger than thousandths, some students conclude that decimals that 

express the number of hundredths are smaller than decimals that express the number of 

tenths, regardless of the numbers involved. These children might reason that 0.47 is 

smaller than 0.2 because the former reads “forty-seven hundredths,” the latter reads “two 

tenths,” and hundredths are smaller than tenths (Nesher and Peled 1986; Resnick et al. 

1989).  
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Errors produced by these two rules are common (Desmet et al. 2010; Durkin and 

Rittle-Johnson 2015; Nesher and Peled 1986; Resnick et al. 1989; Sackur-Grisvard and 

Léonard 1985). To cite one example, in Nesher and Peled (1986), 6th graders were asked 

to state strategies for comparing the magnitudes of pairs of decimals. The problems were 

designed to detect use of the two rules. A student following the whole number rule would 

correctly choose 3.47 as larger than 3.2 but incorrectly choose 4.63 as larger than 4.8. In 

contrast, a student following the fraction rule would correctly choose 4.8 as larger than 

4.63 but incorrectly choose 3.2 as larger than 3.47. Using items like these, Nesher and 

Peled found that the reasoning of 33% of 6th graders about which decimal was bigger 

consistently followed the fraction rule, and the reasoning of 20% consistently conformed 

to the whole number rule.  

Similar strategies are evident on other tasks that assess decimal magnitude 

understanding. When 5th graders were asked to choose which of four marks represented a 

given decimal on a 0 to 1 number line, 39% tended to follow the rule “longer decimals 

are larger” (Rittle-Johnson et al. 2001). Similarly, Durkin and Rittle-Johnson (2015) 

presented 4th and 5th graders with tasks assessing number line estimation, magnitude 

comparison, and density (e.g., write a decimal that comes between 0.14 and 0.148), as 

well as a task assessing the meaning of zero within decimals (e.g., circle all the numbers 

that equal 0.51: 0.5100, 0.051, 0.510, 51). Proportions of responses conforming to each 

rule were calculated by dividing the number of instances consistent with a particular rule 

by the total number of instances where that rule was applicable. Before any intervention, 

42% of the answers of 4th and 5th graders conformed to the whole number rule and 10% 

conformed to the fraction rule. A similar pattern was found on a separate problem in the 
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same study where students were asked to judge whether 0.� or 0.��� was greater (the 

“�”s represent numbers covered by pieces of paper): 52% of answers were consistent 

with the whole number rule, and 12% were consistent with the fraction rule. Similar to 

fractions, although frequency of such errors decreases with age and many people 

correctly compare decimals by accessing their holistic magnitudes, processing of 

component magnitudes (i.e., magnitudes of the fractional part of decimals) persists even 

among adults (Ganor-Stern 2013; Varma and Karl 2013). 

Studies that have assessed knowledge of the same participants or participants 

from the same sample provide mixed evidence for the relative ease of understanding 

decimal and fraction magnitudes. Several studies suggest that people understand decimal 

magnitudes better than fraction magnitudes. For example, Iuculano and Butterworth 

(2011) tested 6th graders and college students with decimal and fraction zero to one 

number line estimation tasks. The assessment of number line estimation included both a 

position to number task (PN; given a position of a number on a number line, estimate the 

number) and a number to position task (NP; given a number, estimate its position on a 

number line). Estimates of fractions were less accurate than those of decimals on both 

tasks. Moreover, on the PN task, both children’s and adults’ numerical estimates showed 

a linear trend with decimals but not fractions. Wang and Siegler (2013) also found that 4th 

and 5th graders’ number line estimation and magnitude comparison accuracy was higher 

for decimals than fractions.  

College students’ magnitude comparisons have also been found to be faster and 

more accurate, and to show a more consistent distance effect with decimals than with 

fractions (DeWolf et al. 2014; Ganor-Stern 2013; Hurst and Cordes 2016). For example, 
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in Ganor-Stern (2013), a distance effect (quicker and more accurate responses when the 

numbers compared were further apart) was more consistently present when students 

compared decimals than when they compared fractions. Similarly, Hurst and Cordes 

(2016) found that college students were fastest in comparing pairs of decimals, next 

fastest in comparing one decimal and one fraction, and slowest in comparing two 

fractions.  

In contrast to studies that found a decimal advantage, DeWolf et al. (2015a) found 

that seventh graders’ accuracy on number line estimation was similar for fractions and 

decimals. Percent absolute error (PAE: (|estimate – correct answer|/numerical range) * 

100) was 15% for both types of numbers.  

However, a closer look at the decimal and fraction stimuli used in these studies 

suggests that the presence of a decimal advantage may depend on the equality of the 

number of digits in the decimals presented to participants. In almost all of the magnitude 

comparison experiments where a decimal advantage was found, the decimals in each pair 

had the same number of digits to the right of the decimal point (Experiment 1 and 2 in 

DeWolf et al. 2014; Ganor-Stern 2013; Hurst and Cordes 2016; Wang and Siegler 2013). 

Experiment 3 in DeWolf et al. (2014) is the only experiment that found a decimal 

advantage when the decimals being compared varied in their number of digits. Consistent 

with this analysis, decimal comparison problems with decimals of unequal numbers of 

digits pose greater difficulty for children than problems with decimals of equal numbers 

of digits (Desmet et al. 2010; Durkin and Rittle-Johnson 2015; Nesher and Peled 1986; 

Rittle-Johnson et al. 2001; Sackur-Grisvard and Léonard 1985). 

There is a simple reason why strong performance on comparison tasks involving 
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decimals with equal numbers of digits to the right of the decimal point may not indicate 

strong understanding of decimal magnitudes. Accurate performance can be produced on 

such problems by ignoring the decimal point and treating the numbers being compared as 

whole numbers. Comparisons among the accuracy and speed of magnitude comparison of 

fractions, decimals with equal numbers of digits to the right of the decimal point, and 

decimals with unequal numbers of digits to the right of the decimal point, matched for the 

magnitudes of the numbers being compared, are necessary to establish whether decimal 

magnitude comparison is generally easier than fraction magnitude comparison.   

Similarly, the higher accuracy with decimals than fractions on number line 

estimation tasks may depend on the number of digits in the decimals. In both of the 

number line estimation experiments where a decimal advantage was present, all decimals 

had two digits to the right of the decimal point (Iuculano and Butterworth 2011 (Iuculano, 

personal communication 13 February 2017); Wang and Siegler 2013). In contrast, the 

only number line estimation experiment that used decimals of varying number of digits 

showed identical accuracy for decimals and fractions (DeWolf et al. 2015a). Moreover, 

recently collected data suggest that children’s estimates of decimals to the hundredth 

place were more accurate than estimates of decimals to the tenth place (Tian and Siegler 

2017). 

The influence of equality of number of digits on understanding decimal 

magnitudes decreases with age, as shown by data on decimal magnitude comparison 

tasks. Sackur-Grisvard and Léonard (1985) found that the percent of students who 

believed longer decimals are inevitably larger decreased between Grade 4 and 5. 

Similarly, cross-sectional data from Nesher and Peled (1986) showed that the percent of 
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students holding this belief decreased from Grade 7 to Grade 9. Thus, the age and 

experience of participants might influence the relative ease of understanding decimal and 

fraction magnitudes, a hypothesis that could be tested by examining changes with age in 

relative knowledge of decimal and fraction magnitudes in the same sample. 

To summarize, children have different types, but similar levels, of difficulty with 

fraction and decimal magnitudes. Most studies that found better performance with 

decimals than fractions have used particularly easy decimal problems: magnitude 

comparison problems in which both numbers being compared have two digits to the right 

of the decimal point, and 0-1 number line estimation problems in which the decimals 

being estimated have two digits to the right of the decimal point (DeWolf et al. 2014; 

Ganor-Stern 2013; Hurst and Cordes 2016; Iuculano and Butterworth 2011; Wang and 

Siegler 2013). These decimal comparisons can be answered correctly by treating the 

decimals as whole numbers, and in the case of number line estimation, by also treating 

the end points of the number lines as 0 and 100. Thus, good performance on such tasks 

may not indicate good understanding of decimal magnitudes more generally. 

Arithmetic. The literature on rational number arithmetic shows a similar pattern 

to that on magnitudes. Although misunderstandings of fraction arithmetic have received 

much more attention, misunderstandings of similar seriousness and prevalence are 

present in decimal arithmetic. Moreover, a basic reason for the prevalence of these errors 

– weak conceptual understanding of the arithmetic operations in the context of rational 

numbers - appears to underlie the errors in both fraction and decimal arithmetic. In this 

section, we first review findings regarding fraction arithmetic and then ones on decimal 

arithmetic.  



Tian	and	Siegler,	Which	Type	of	Rational	Numbers	Should	Students	Learn	First?	

	 17	

As with misunderstandings of individual fractions, misunderstandings of fraction 

arithmetic often derive from viewing each operand as two independent whole numbers. 

Thus, children often produce independent whole number errors in fraction addition and 

subtraction by applying the arithmetic operation independently to the two numerators and 

to the two denominators. A child using this strategy on 1/2 + 1/3 would answer “2/5”.  

Independent whole number errors are common in fraction addition and 

subtraction. For example, in Hecht (1998), independent whole number errors accounted 

for 39% of the errors that seventh and 8th graders made on fraction addition problems. In 

Siegler and Pyke (2013), 6th and 8th graders made independent whole number errors on 26% 

of the addition problems and 20% of the subtraction problems. Community college 

students and even pre-service teachers also often make such errors (Silver 1983; Stigler et 

al. 2010).  

Beyond the influence of whole number knowledge, difficulty in fraction 

arithmetic also arises from the complicated relations among the procedures of different 

fraction arithmetic operations (Lortie-Forgues et al. 2015). Each fraction arithmetic 

operation comprises a chain of steps; some steps in one arithmetic operation are shared 

by one or more other fraction arithmetic operations. For example, to solve a fraction 

addition problem with unequal denominators, one needs to 1) find a common 

denominator, 2) transform the operands to fractions with that common denominator, 3) 

add the numerators, and 4) maintain the common denominator in the answer. Step 4 is 

also a component of fraction subtraction, but not of fraction multiplication or division.  

Many children import steps of other fraction arithmetic operations that are 

inappropriate for the requested operation, a type of mistake that Siegler and Pyke (2013) 
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labeled wrong fraction operation errors. For example, maintaining the common 

denominator in 2/5 *3/5 = 6/5 is a wrong fraction operation error, because it treats the 

denominator as would be appropriate in an addition or subtraction problem but not in a 

multiplication problem. In Siegler and Pyke (2013), 6th and 8th graders made wrong 

fraction operation errors on 55% of the fraction division problems and 46% of the 

multiplication problems. These errors were also common in other samples of children 

(Siegler et al. 2011; Torbeyns et al. 2015) and among pre-service teachers (Newton 2008). 

Decimal arithmetic performance also is influenced by overgeneralizing whole 

number arithmetic procedures. For addition and subtraction of decimals with different 

number of digits in the fractional parts, incorrect alignment of the decimal operands is the 

most frequent source of errors (Hiebert and Wearne 1985, 1986; Lai and Murray 2014). 

Children tend to align the rightmost digit of decimals, which is correct in whole number 

arithmetic and when adding or subtracting decimals with equal numbers of digits to the 

right of the decimal point, but such alignment is incorrect in decimal addition or 

subtraction with unequal numbers of digits to the right of the decimal point. For example, 

when adding 6 and 0.32, 43% of 5th graders answered 0.38 (Hiebert and Wearne 1985). 

This answer occurred significantly more often than the next most frequent error, a pattern 

that persisted in 6th, seventh, and ninth grades (Hiebert and Wearne 1985). Similarly, 

failure to align the decimal points accounted for about half of the errors in decimal 

addition and subtraction problems among Australian 12-year-olds (Lai and Murray 2014).  

Children also have great difficulty correctly placing the decimal point when 

answering multiplication and division problems (Hiebert and Wearne 1985, 1986; Lai 

and Murray 2014; Lortie-Forgues and Siegler 2017). For example, when multiplying 0.05 
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by 0.4, more than half of 6th graders answered 0.2 or 2; these two answers continued to be 

the most common errors through Grade 9 (Hiebert and Wearne 1985, 1986). Similar 

findings have been obtained on standardized tests with large, nationally representative 

samples; on the second NAEP, about half of the decimal multiplication errors made by 

13-year-olds involved incorrect placement of the decimal point (Carpenter et al. 1981). In 

a more recent study, misplacement of the decimal point in the answers accounted for 73% 

of middle school students’ decimal multiplication errors (Lortie-Forgues and Siegler 

2017). 

The frequencies of errors caused by misalignment of decimal operands in addition 

and subtraction and by misplacement of the decimal point in multiplication and division 

answers decrease with age (Hiebert and Wearne 1985, 1986). For example, in Hiebert 

and Wearne (1986), frequency of misaligning the rightmost digit when solving the 

problem “4 + .3” decreased from 90% among 4th graders to 84% among 5th and 6th 

graders, 53% among seventh graders, and 14% among ninth graders.  

In both fraction and decimal arithmetic, errors produced by faulty procedures are 

well documented. Some of these errors violate the direction of effects principle; that is, 

the magnitude of the answer is in the wrong direction relative to the operands and 

operation. For example, 2/5 * 3/5 = 6/5 is a direction of effects error, because multiplying 

two positive numbers smaller than one must yield answers smaller than either operand, 

and 6/5 is bigger than either operand. However, it is unclear whether such errors are due 

to lack of conceptual understanding of the arithmetic operations or to heavy working 

memory demands preventing children from accessing their conceptual understanding 

while solving rational number arithmetic problems.  
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The direction of effects task was developed to distinguish between these two 

theoretical interpretations. On a direction of effects task, participants are asked to 

evaluate mathematical inequality problems, for example, to judge whether the inequality 

“31/44 * 27/65 > 31/44” is true or false. Participants are instructed not to compute the 

arithmetic problems but rather to reason out whether the inequality is true or false. 

Computation is further discouraged by presenting items that are hard to mentally compute, 

and not providing paper, pencils, or calculators. Thus, direction of effects problems 

greatly reduce working memory demands in rational number arithmetic and enable 

assessment of conceptual understanding of arithmetic. 

Siegler and Lortie-Forgues  (2015) presented direction of effects problems with 

fractions to middle school students and pre-service teachers. Accuracy was near ceiling 

on all addition and subtraction problems and on multiplication and division problems 

with fractions larger than one. Note that correct answers to these problems are the same 

as on parallel problems involving whole number operands. For example, “51/16 ÷ 47/33 > 

51/16” is “false,” just as “51 ÷ 47 > 51” would be.  

In contrast, accuracy was below chance on multiplication and division direction of 

effects problems with fractions between zero and one, where correct answers to the 

inequalities are inconsistent with correct answers to parallel whole number problems. For 

example, the inequality “31/56 * 17/42 > 31/56” is “false,” unlike parallel multiplication 

problems involving whole number operands, such as “31 * 17 > 31.” Middle school 

students were correct on only 31% of multiplication and 47% of division items on such 

problems. 

Even more striking, pre-service teachers were correct on only 33% and 30% of 
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these two-choice multiplication and division direction of effects problems with fraction 

operands between zero and one. In contrast, the pre-service teachers, like the middle 

school students, were correct on more than 90% of judgments on the six types of 

problems where the correct answers were the same as it would have been if the operands 

were whole numbers. The multiplication and division problems with fractions between 

zero and one were far from impossible; students at a highly selective university were 

correct on 94% to 100% of all eight types of items.  

Performance on direction of effects tasks with decimals revealed the same type of 

weak understanding as found with fractions. In Lortie-Forgues and Siegler (2017), 6th and 

8th graders were correct on only 19% of both multiplication and division direction of 

effects problems with decimal operands between zero and one. In contrast, the same 

children were correct on almost 90% of direction of effects multiplication and division 

problems with decimal operands above one. Thus, many people seem to hold the 

misconception that “multiplication makes bigger” and “division makes smaller, ” a 

generalization that they seem to apply to both fractions and decimals regardless of 

operand magnitudes (Fischbein et al. 1985; Graeber and Tirosh 1990).  

To summarize, fraction and decimal arithmetic pose similarly large difficulties to 

learners. Errors with both notations are common among children and even adults, and it is 

unclear whether arithmetic with either notation is generally easier than with the other. 

Moreover, conceptual understanding of rational number arithmetic is similarly weak with 

both notations, as evidenced by highly similar patterns of correct answers and errors on 

fraction and decimal direction of effects problems. This weak conceptual understanding 

probably underlies the many particular arithmetic errors seen with both fractions and 
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decimals. 

Density. Density understanding involves knowing that there are an infinite 

number of fractions and decimals between any two other numbers. Both high school 

students and younger children seem to have little understanding of the density of either 

fractions or decimals. When answering questions regarding whether there are a finite or 

an infinite number of numbers between two decimals or fractions, the answer “finite” was 

the most common response among ninth graders in both open-ended (65%) and forced-

choice (52%) questions. The percent of children showing this misconception decreased 

during high school, but more than one-third of eleventh graders answered “finite” to both 

questions (Vamvakoussi and Vosniadou 2007).  

This study did not report performance on fraction and decimal problems 

separately, but Vamvakoussi and Vosniadou (2010) did. They tested seventh, ninth, and 

eleventh graders’ knowledge of density with pairs of decimals with the same number of 

digits to the right of the decimal point and pairs of fractions with the same denominator 

or the same numerator on force-choice questions. For each question, students’ 

performance was scored “1” if they chose the options that there are a finite number of 

decimals or fractions between the two numbers, “2” if they chose the options that there 

are an infinite number of one type of number between the two numbers (e.g., “there are 

infinitely many decimals”), or “3” if they choose the option that there are an infinite 

number of all types of numbers between them (i.e., “there are infinitely many numbers 

and they have various forms”).  

Mean performance was around 1.5 for seventh graders and around 1.9 for ninth 

and eleventh graders. Thus, even many eleventh graders had not reached a correct 
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understanding of the density property of decimals or fractions. When comparing 

performance on density problems for the two notations, seventh graders performed better 

on decimals than fractions, but the judgments of ninth and eleventh graders did not differ 

on the two types of problems.  

In Vamvakoussi et al. (2011), Greek and Flemish ninth graders were tested with 

the same problems as in Vamvakoussi and Vosniadou (2010). As in the prior study, the 

density judgments of students in Vamvakoussi et al. (2011) were similar on decimal and 

fraction pairs. 

Many adults also have little understanding of the density property of decimals and 

fractions. Tirosh et al. (1999) found that only 40% of Israeli pre-service teachers knew 

that there are an infinite number of numbers between 0.23 and 0.24, and only 24% knew 

that there are an infinite number of numbers between 1/5 and 1/4. Unlike the better 

performance on decimal than on fraction density judgments found in Tirosh et al. (1999), 

Giannakoulias et al. (2007) found that more college students knew that there are an 

infinite number of numbers between two fractions (87%) than between two decimals 

(65%). Thus, as with knowledge of magnitudes and arithmetic, there does not seem to be 

a consistent difference between understanding of density for decimals and fractions.   

Translation. Given low levels of accuracy on tasks involving only fractions or 

only decimals, it is not surprising that many children have difficulty viewing decimals 

and fractions as alternative notations within a single unified system (O’Connor 2001; 

Pagni 2004; Sweeney and Quinn 2000; Vamvakoussi and Vosniadou 2010). For example, 

when asked about the type of numbers between two fractions or two decimals, nearly 80% 

of seventh graders and more than half of ninth and eleventh graders indicated that that 
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there are only decimals between two decimals and only fractions between two fractions 

(Vamvakoussi and Vosniadou 2010).  

Children’s lack of understanding that fractions and decimals are alternative 

notations for expressing magnitudes and other numerical properties is also revealed by 

their poor performance translating between the two notations. Hiebert and Wearne (1983) 

examined 5th, seventh, and ninth graders’ translations of decimals to fractions and 

fractions to decimals. Accuracy of 5th graders was between 19% and 31% correct when 

translating fractions between zero and one with a denominator of 10 or 100 into decimals, 

far from good but better than the roughly 10% correct when translating decimals between 

zero and one with two digits to the right of the decimal point into fractions (only exact 

answers were considered correct; Hiebert, personal communication 22 February 2017). 

Nearly one fourth of the 5th graders simply transformed the numerals in fractions or 

decimals to another format (e.g. 0.37 = 3/7; 4/10 = 4.10).  

Accuracy of seventh and ninth graders was considerably greater than that of 5th 

graders, but understanding remained limited (Hiebert and Wearne 1983). Accuracy of 

translating proper fractions with a denominator of 10 or 100 into decimals was about 70% 

among seventh graders and 85% among ninth graders. However, interviews with a 

representative sample of the seventh and ninth graders indicated that more than half of 

the seventh graders and more than one third of the ninth graders “were unable to write ¼ 

as a decimal” (Hiebert and Wearne 1985, p. 23). Most seventh and ninth graders knew 

that a decimal could be translated into a fraction with a denominator of a power of ten, 

and that such a fraction could be translated into a decimal by using the numerator and 

placing the decimal point at a particular position (the exact percentage of children with 
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this knowledge was not included in the report). However, fewer students could explain 

why these procedures worked. Similarly, although about half of 8th graders accurately 

translated fractions with a denominator of 10 or 100 into decimal equivalents on a NAEP, 

less than 40% correctly chose “ .2” as equivalent to 1/5 from among 0.15, 0.2, 0.5, 0.51 

and “I don’t know” (Carpenter et al. 1981). 

An interview with a 12-year-old boy named Benny provided a detailed illustration 

of the tendency of many children to apply a rule for converting fractions to decimals 

without any obvious conceptual basis (Erlwanger 1973). Benny’s procedure for 

converting a fraction into a decimal was to find the sum of the numerator and the 

denominator of the fraction and then place the decimal point to the left of the sum if the 

sum was a single digit (e.g., 1/8 = .9) or to place the decimal point immediately to the 

right of the leftmost digit of the sum if the sum included multiple digits (e.g., 9/10 = 1.9). 

Benny was confident in his answers and followed his rules consistently. 

Many adults also show limited understanding of equivalent fractions and decimals. 

When asked to choose all numbers equivalent to 0.03 from a list of rational numbers, 

more than half of community college students correctly chose 3/100 and 3%, but only 9% 

chose 30/1000 (Stigler et al. 2010). Thus, accuracy and strategy reports on translation 

problems suggest that translating between fractions and decimals is difficult for many 

children and adults. One potential explanation is that they might not realize that decimals 

and fractions are part of a single system of rational numbers. 

 

Understanding of Percentages 

Much less is known about development of understanding of percentages than about 
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development of understanding of either fractions or decimals. The relatively few studies 

are often not directly comparable to those that have been done with fractions and 

decimals, and much of the little that is known comes from studies conducted more than 

70 years ago, in the 1940’s. We present what is known in this section, so that the review 

includes all three rational number notations and to provide a foundation for more 

extensive future research on this important topic. 

In the U.S., percentages usually are formally introduced in Grade 6, which is 

later than decimals and fractions (CCSSI, 2010). Children do have informal experience 

with percentages from earlier ages, though. For example, percentages are pervasively 

used to indicate the materials in clothing (e.g., a 100% silk dress) and to represent price 

discounts (e.g., a 40% off sale).  

Similar to decimals and fractions, children’s understanding of percentages is 

limited. Some children showed competence with familiar percentages, such as 50%, 

100%, or 25%, but not with unfamiliar ones. Gay and Aichele (1997) asked seventh and 

8th graders to match a shaded part of a rectangle or a set of circles to a given percentage. 

The percentages used were 50%, 25%, 100%, 60%, 110%, 33 1/3%, and 87%, presented 

in order from the most familiar to the least familiar, as determined by a pilot study. For 

example, one question included three shaded circles and two blank ones. Children were 

asked to decide whether, compared to the whole set, the shaded circles were “greater than 

50%”, “less than 50%”, “equal to 50%”, “can’t tell”, or “I don’t know”. Children judged 

more accurately when the percentage was familiar than when it was unfamiliar. Similarly, 

Lembke and Reys (1994) indicated that fifth, seventh, ninth and eleventh graders used 

familiar percentages (e.g., 50%, 25%, and 100%) as benchmarks to identify unfamiliar 
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percentages of squares, lines, and circles. 

Children’s arithmetic involving percentages is quite inaccurate. Much of the little 

that is known about this topic has been learned on “Percentage * Whole = Portion” 

problems. Participants were asked to either find percentage, whole or portion when the 

other two were known. In one study (Guiler 1946a), only about half of ninth graders 

found the percentage when the whole and the portion were known (e.g., 20 games is __% 

of 25 games), or found the portion when the percentage and the whole were known (e.g., 

88% of $1.75 = $ __). When asked to find the whole given the percentage and the portion 

(e.g., 125% of $__ = $8.00), only 6% of ninth graders responded correctly. College 

freshmen were similarly inaccurate on the same problems. For example, only 12.3% 

found the whole given the percentage and the portion (Guiler 1946b). These studies were 

conducted more than 70 years ago, and arithmetic with percentages might have improved 

in the interim, but given the general secular decline in numerical skills among American 

adults (Geary et al. 1996, 1997; Schaie 1993), this seems far from certain. 

Analyses of ninth graders’ and college freshmen’s errors on the problems 

revealed that using inappropriate procedures was a common mistake when finding the 

percentage or the whole (Guiler 1946a, 1946b). To cite an example, 18% of ninth graders 

and 15% of college freshmen divided the whole by the portion to find the percentage (e.g., 

to find “20 games is _% of 25 games”, they calculated 25/20 = 125%). To cite another 

example, 36% of ninth graders and 32% of college freshmen multiplied the percentage 

and the portion to find the whole.  

Similar to decimals and fractions, many children do not understand the direction 

of effects of multiplication with percentages between zero and one (Gay and Aichele 
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1997). Only 45% of seventh and 8th graders responded correctly when asked whether 87% 

of 10 was less than 10, greater than 10, equal to 10, “can’t tell”, or “I don’t know” (Gay 

and Aichele 1997). Among the 55% of children who were unsuccessful on this problem, 

61% chose “greater than 10”, which is consistent with the prevalent belief among many 

children that “multiplication makes bigger” (Fischbein et al. 1985; Graeber and Tirosh 

1990). Similarly, on the 1986 NAEP, when asked whether 76% of 20 is greater than, less 

than, or equal to 20, only 37% of seventh graders and 69% of eleventh graders answered 

correctly (Kouba et al. 1988).  Thus, the few studies that have been conducted on 

arithmetic with percentages indicate that even high school and college students’ 

knowledge in this area is weak. 

 

Rational Number Interventions 

A more direct way to answer the question “which rational number format should be 

taught first” is to assess the effects of interventions that implement different teaching 

sequences. One intervention that addressed this issue contrasted the effects of a widely 

used Canadian curriculum that taught rational numbers in the standard order of fractions- 

decimals- percentages with the effects of an experimental curriculum that taught the three 

in the opposite order: percentages-decimals-fractions (Moss 1997; Moss and Case 1999). 

The participants, fourth graders without any previous instruction in rational numbers, 

were randomly assigned to receive one of the two curricula. The experimental curriculum 

included 20 sessions over a 5-month period; the traditional one included 25 sessions over 

a slightly shorter time period.  
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The experimental curriculum emphasized connections among the three rational 

number formats. Instruction started with an introduction to percentages, with students 

being asked to estimate the fullness of several glasses of water in percentages. Two-digit 

decimals were later introduced as an alternative notation to percentages. Fraction 

terminology was used informally throughout the program as an alternative notation to 

percentages and decimals before being formally introduced. For example, the term one 

half or ½ was used interchangeably when 50% or 0.50 was presented. At the end of the 

intervention, lessons focused on fractions were given. In them, children represented 

fractions in multiple ways, including spatial displays, decimals, and percentages, and 

solved equations involving fractions as well as decimals and percentages. 

After the intervention, children in the experimental group demonstrated greater 

understanding of rational numbers on a variety of measures, including: non-standard 

computation, standard computation, symbol-graphic representation, magnitude 

knowledge, word problems, and translation among notations. On the assessment, the 

authors “intentionally included a number of questions that were closer in their content to 

the sort of training that the experimental group received and a number that were closer to 

the training received by the control group” (Moss and Case 1999, p. 134). Children in the 

experimental group were similarly accurate on standard computation to children in the 

control group, although they, unlike children in the control group, did not receive 

instruction on standard rational number arithmetic algorithms. Compared with children in 

the control group, children in the experimental group also relied less on whole number 

strategies when solving novel problems and were more accurate in translating fractions 

into decimals. Later studies implemented this rational number curriculum with another 
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group of fourth graders and a group of sixth graders; both groups achieved better learning 

results compared to students who received traditional curricula (Kalchman et al. 2001). 

Moss and Case (1999) argued that the teaching sequence of the three rational 

number notations that was implemented in the intervention “maximize the connection 

between their (i.e., children’s) original, intuitive understanding of ratios and their 

procedures of splitting numbers” (p. 126). Because this experimental curriculum differed 

in many ways from the control curriculum, not only in the order in which rational number 

formats were introduced but also in its greater emphasis on magnitudes and its emphasis 

on linking the curricular materials to children’s intuitive understanding, the effect of the 

sequence in which rational numbers were taught remains to be established. However, the 

positive effects of this intervention justify further examination of whether changing the 

order in which rational number formats are taught would result in improved learning.  

 

Discussion and Conclusions 

Are decimals easier to understand than fractions? The shared base-10 

structure of whole number and decimal notations, together with the quite different 

bipartite structure of fractions, have led a number of researchers to propose that decimals 

are easier to master than fractions (DeWolf et al. 2014, 2015b; Ganor-Stern 2013; Hurst 

and Cordes 2016; Iuculano and Butterworth 2011; Johnson 1956; Zhang et al. 2013). 

However, the present review indicates that this conclusion is not justified. Although the 

symbols used to represent decimals and whole numbers have clear similarities, the same 

conceptual difficulties that interfere with understanding of fractions also interfere with 

understanding of decimals, leading to similarly weak understanding of fractions and 
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decimals.  

The empirical basis for arguing that decimals are easier to understand than 

fractions comes largely from studies of magnitude comparison. In these studies, 

performance on problems involving decimals has been found to be more accurate and 

faster than performance on problems involving fractions (DeWolf et al. 2014; Hurst and 

Cordes 2016; Wang and Siegler 2013). However, these studies have confounded notation 

with denominator equality. The fraction problems have had unequal denominators, 

whereas the decimal problems have had the equal denominators that are implicit when 

decimals have the same number of digits to the right of the decimal point. Comparing 

decimals with equal numbers of digits to the right of the decimal point allows participants 

to perform quickly and accurately by simply ignoring the decimal point and treating the 

decimals as whole numbers. 

Thus, in magnitude comparison tasks, performance on relatively easy decimal 

problems (ones with equal numbers of digits to the right of the decimal point) has been 

compared to performance on relatively difficult fraction problems (ones with unequal 

denominators). Attesting to the decimal comparison problems being relatively easy, 

magnitude comparison of decimals is more accurate when the decimals being compared 

have equal rather than unequal numbers of digits to the right of the decimal point 

(Desmet et al. 2010). Attesting to the fraction comparisons problems being relatively 

difficult, magnitude comparisons of fractions are slower and less accurate when the 

fractions have unequal rather than equal denominators (Obersteiner et al. 2013).  

This confounding of notation with problem difficulty on magnitude comparison 

problems implies that appropriate conclusions regarding the difficulty of understanding 
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fraction and decimal magnitudes will require two types of comparisons that have not yet 

been performed.  One informative comparison would be between easy problems in each 

notation (magnitude judgments involving pairs of decimals with equal numbers of digits 

to the right of the decimal point being compared to magnitude judgments with pairs of 

fractions with equal denominators).  Another informative comparison would be between 

difficult types of problems in each notation (magnitude judgments involving pairs of 

decimals with unequal numbers of digits to the right of the decimal point being compared 

to magnitude judgments involving pairs of fractions with unequal denominators). 

Including all four types of comparison in a single study would allow examination of 

interactions between notation and problem difficulty, as well as of whether one notation 

was generally easier. 

Similarly, the number line estimation tasks where children performed better with 

decimals than fractions used easy decimal problems (ones in which all decimals had two 

digits to the right of the decimal point) and difficult fraction problems (ones with varying 

denominators) (Iuculano and Butterworth 2011; Wang and Siegler 2013). The one 

number line study that compared fraction and decimal magnitude knowledge using 

difficult problems for both notations (DeWolf et al. 2015a) did not show a difference 

between the accuracy of estimates for the two notations; percent absolute error was 

identical for the two notations (both 15%).  

  With regard to other areas of research on knowledge of fractions and decimals -- 

arithmetic procedures, conceptual understanding of arithmetic, and the density property 

of rational numbers -- lack of research assessing fraction and decimal knowledge of the 

same participants or participants from the same sample precludes direct comparisons of 
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understanding of the two notations. However, similar misconceptions are evident with 

both notations, and their frequency seems roughly comparable. Children’s poor 

performance and frequent errors on both fraction and decimal arithmetic are well 

documented (Hiebert and Wearne 1985, 1986; Lai and Murray 2014; Lortie-Forgues et al. 

2015; Siegler and Pyke 2013). With both fractions and decimals, weak conceptual 

understanding of arithmetic with rational numbers seems to underlie diverse particular 

errors. Many, probably most, children and adults mistakenly believe that multiplying two 

fractions or decimals always produces answers greater than the operands and that 

dividing by a fraction or a decimal always yields an answer smaller than the dividend 

(Lortie-Forgues and Siegler 2017; Siegler and Lortie-Forgues 2015).  

Children’s understanding of the density property of both fractions and decimals is 

also weak. They often deny that there are an infinite number of numbers between 

fractions such as 5/7 and 6/7 and between decimals such as 0.31 and 0.32 (Vamvakoussi 

et al. 2011; Vamvakoussi and Vosniadou 2007, 2010). Again, no difference in 

understanding of this property of fractions and decimals is evident.  

Little research has been performed that directly compares development of decimal 

and fraction knowledge. This is true in all of the areas of development considered in this 

review: rational number magnitudes, arithmetic, density, and translation. Children’s 

performance improves with age and experience in all areas (Braithwaite and Siegler, in 

press; Hiebert and Wearne 1983, 1985; Nesher and Peled 1986; Siegler and Pyke 2013; 

Vamvakoussi and Vosniadou 2010), but the developmental trajectories and asymptotic 

levels of understanding are impossible to compare without studies presenting comparable 

fraction and decimal problems (and ideally problems with percentages as well) to 



Tian	and	Siegler,	Which	Type	of	Rational	Numbers	Should	Students	Learn	First?	

	 34	

participants of a wide age range (ideally the same participants). Such developmental 

studies seem to merit high priority, because they would substantially improve 

understanding of the development of rational number knowledge. 

Lack of research on knowledge of percentages. Given the importance of 

percentages and students’ poor knowledge of them (Carpenter et al. 1975; Kloosterman 

2012; Kouba et al. 1988), it is surprising how little research has been done to investigate 

them. In this review, we were only able to locate four published articles that focused on 

knowledge of percentages (Gay and Aichele 1997; Guiler 1946a, 1946b; Lembke and 

Reys 1994). Moreover, two of the four were published 70 years ago, which renders 

uncertain their applicability to current student populations. Parker and Leinhardt (1995) 

conducted a review of “70 years of empirical research” (p. 423) on learning of 

percentages. However, the data cited in that review were mostly from dissertations, 

unpublished manuscripts, and conference proceedings, making it difficult to evaluate the 

quality of the studies.  

The poor performance documented in the two published studies from the 1940’s 

is unlikely to have improved, given the general cross-generational decline in numerical 

skills among American adults (Geary et al. 1996, 1997; Schaie 1993). Thus, remedying 

poor understanding of percentages remains a serious concern at present. The lack of 

published articles on the topic, together with the importance of the topic, makes research 

on children’s understanding of percentages essential for a comprehensive depiction of 

rational number knowledge and its development.   

Which rational number format should be learned first? Although existing 

findings indicate that children have weak understanding of decimals, fractions, and 
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percentages alike, teaching the three rational number formats in a sequence different than 

that in the traditional curriculum may still be useful. In particular, children’s superior 

learning from the curriculum developed by Moss and her colleague (Kalchman et al. 

2001; Moss 1997; Moss and Case 1999) is consistent with the hypothesis that teaching 

rational numbers in the sequence of percentages first, decimals next, and fractions last 

yields better outcomes than the traditional sequence.  

To decide which rational number format should be taught (and learned) first, 

several questions need to be considered: 1) which rational number format is easiest to 

learn, 2) in which rational number format can misunderstandings be overcome most 

quickly, and 3) from which rational number format can knowledge be transferred most 

easily. Types of research needed to answer the first two questions have been discussed 

above. To investigate the third question, research on translation among rational number 

formats is needed.  

The limited work on translating between rational number notations leaves unclear 

how well knowledge of the first-taught notation is transferred to later-taught ones. 

Hiebert and Wearne (1983) found that children translated fractions with a denominator of 

10 or 100 into decimals more accurately than they translated decimals with two digits to 

the right of the decimal point into fractions. However, performance on the second NAEP 

showed weak translation performance between fractions and decimals in both directions 

(Carpenter et al. 1981). We were unable to locate any research that examined translation 

between percentages and the other rational number notations in either direction. 

Clearly, far more research is needed before data will provide a rational basis for 

choosing one instructional order over others. To deepen our understanding of numerical 
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development, and to develop more effective instruction on all three rational number 

notations, we believe at least four issues need to be addressed. First, research on 

knowledge of percentages, especially on their magnitudes, density, and arithmetic, needs 

to be conducted. Second, parallel fraction, decimal, and percentage items need to be 

presented to the same participants to determine the relative ease of understanding of the 

three notations. Third, such research should be done with young children who are at the 

beginning of rational number instruction; with older children, who are receiving or have 

recently received instruction in these topics; and with adolescents and adults, who often 

use rational number arithmetic in mathematics and science courses and in their work. In 

this way, the developmental trajectory of knowledge of rational numbers can be better 

understood. Finally, research on translation among different rational number formats is 

needed, to examine the degree to which people possess an integrated representation of 

rational numbers and to identify ways to promote integrated knowledge of them. 

Together, these four types of research may provide a theoretical and empirical basis for 

predicting the optimal order for teaching students the three rational number notations, for 

testing the predictions, and for creating improved instructional methods for helping 

students understand them. 

Instruction in rational numbers. The sequence in which different rational 

number notations are taught is obviously not the only factor that influences the success of 

rational number instruction. As discussed above, rational numbers are a complicated 

construct not only because that they can be expressed in different notations but also 

because each notation has several interpretations. Even understanding all the 

interpretations of one rational number notation is not easy for children, much less 
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extending the interpretations from one notation to the others.  

There have been many efforts to improve rational number instruction through 

focusing on a particular interpretation. Steffe (2001) proposed a unit coordination 

approach that encouraged children to establish a partition scheme to obtain the concept of 

unit fractions and then to reorganize their whole number counting schemes to construct 

any given fractions besides unit fractions. Confrey and her colleagues (Confrey and 

Smith 1994; Lachance and Confrey 1995) suggested that decimal concepts should be 

based on splitting actions such as sharing, doubling, and halving. In contrast to these 

constructivist approaches, Kellman et al. (2008) employed a perceptual learning method 

to teach fractions through improving students’ ability to extract structures and patterns 

from problems involving fractions.  

Although all these approaches and many others have improved certain aspects of 

children’s knowledge of rational numbers, little attention has been paid to integrating 

understanding of the three notations. The goal of rational number instruction is to achieve 

a robust and flexible understanding of all rational number notations. Thus, efforts should 

be made not only to improve instructional practices of a particular notation, but also to 

facilitate transfer of knowledge from one notation to another. We are a long way from 

this goal, but it is an important goal to pursue. 
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